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Large Language Model-Aware In-Context Learning for Code
Generation

JIA LI, Key Lab of High Confidence Software Technology (Peking University), MoE, Beijing, China
CHONGYANG TAOQ, Beihang University, Beijing, China

JIA'LI&, GE LI, ZHI JIN, HUANGZHAO ZHANG, and ZHENG FANG, Key Lab of High
Confidence Software Technology (Peking University), MoE, Beijing, China

FANG LIU, The State Key Laboratory of Software Development Environment (SKLSDE), SEI, School of

Computer Science & Engineering, Beihang University, Beijing, China

Large Language Models (LLMs) have shown impressive In-Context Learning (ICL) ability in code generation.
LLMs take a prompt context consisting of a few demonstration examples and a new requirement as input, and
output new programs without any parameter update. Existing studies have found that the performance of
ICL-based code generation heavily depends on the quality of demonstration examples and thus arises research
on selecting demonstration examples: given a new requirement, a few demonstration examples are selected
from a candidate pool, where LLMs are expected to learn the pattern hidden in these selected demonstration
examples. Existing approaches are mostly based on heuristics or randomly selecting examples. However,
the distribution of randomly selected examples usually varies greatly, making the performance of LLMs less
robust. The heuristics retrieve examples by only considering textual similarities of requirements, leading to
sub-optimal performance.

To fill this gap, we propose a Large language model- Aware selection approach for In-context-Learning-based
code generation named LAIL. LAIL uses LLMs themselves to select examples. It requires LLMs themselves to
label a candidate example as a positive example or a negative example for a requirement. Positive examples
are helpful for LLMs to generate correct programs, while negative examples are trivial and should be ignored.
Based on the labeled positive and negative data, LAIL trains a model-aware retriever to learn the preference
of LLMs and select demonstration examples that LLMs need. During the inference, given a new requirement,
LAIL uses the trained retriever to select a few examples and feed them into LLMs to generate desired
programs. We apply LAIL to four widely used LLMs and evaluate it on five code generation datasets. Extensive
experiments demonstrate that LAIL outperforms the State-of-the-Art (SOTA) baselines by 11.58%, 3.33%, and
5.07% on CodeGen-Multi-16B, 1.32%, 2.29%, and 1.20% on CodeLlama-34B, and achieves 4.38%, 2.85%, and 2.74%
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improvements on Text-davinci-003 in terms of Pass@1 at MBJP, MBPP, and MBCPP, respectively. In addition
to function-level code generation, LAIL improves the performance of LLMs on DevEval, a repository-level code
generation dataset, which achieves 10.04%, 8.12%, and 4.63% improvements compared to the SOTA baselines
at Pass@1, 3, and 5 on CodeLlama-7B. Human evaluation further verifies that the generated programs of LAIL
are superior in correctness, code quality, and maintainability. Besides, LAIL has satisfactory transferability
across different LLMs and datasets, where the retriever learned on one LLM (dataset) can be transferred to
other LLMs (datasets).

CCS Concepts: « Computing methodologies — Neural networks; « Software and its engineering —
Automatic programming;

Additional Key Words and Phrases: Code generation, in-context-learning, large language model
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1 Introduction

During software development, there is growing interest in automatic code generation due to the
substantial labor involved in manually writing source code. Code generation aims to automatically
generate programs that satisfy the natural language requirements. Recently, many Large Language
Models (LLMs) with In-Context Learning (ICL) have achieved impressive performances in code
generation [13, 23, 38, 40].

Different from fine-tuning, ICL is a new paradigm for transferring LLMs into code generation
and does not require updating parameters. ICL concatenates a few demonstration examples (i.e.,
requirement—code pairs) and a new requirement together, and then feeds them into LLMs. LLMs are
expected to learn the pattern hidden in these demonstration examples and generate programs for the
new requirement. However, ICL is sensitive to the selected demonstration examples, resulting in the
performance usually varying from almost random to near State-of-the-Art (SOTA) performance
[23, 44]. For example, Pass@1 of the MBPP dataset ranges from 14.60% to 22.83% with different
demonstration examples on CodeGen-6B [38].

Despite its importance, how to select effective examples in code generation is still an open
question. Early, researchers randomly select examples from a candidate pool (e.g., the training
data) [11, 33]. The selected examples are typically irrelevant to the test requirement. Besides, the
semantic distributions of these examples vary a lot. As shown in Figure 1(a), we report the selected
top-3 examples by random selection for the test requirement “write a function to check whether the
entered number is greater than the elements of the given array” in the MBPP dataset [4]. We can
find that selected examples are uncorrelated to the test requirement. Thus, the random selection
approach usually results in low performance. Recently, researchers [38] designed the rule-based
heuristic named AceCoder, which considers the textual similarity between a test requirement
and the requirement of candidate examples with BM25 [59], then selects examples with high
similarities. Although achieving improvements, AceCoder only considers lexical matching among
requirements and thus is easily misled by lexicon features, leading to irrelevant examples. Figure 1(b)
presents the selected top-3 examples by AceCoder. They have a large amount of textual overlap
with the test requirement as labeled by underlines. However, the overlapping words are trivial
for accomplishing the requirement such as “write a function to check whether.” Meanwhile, the
operations of non-overlapping words as labeled by the red color, such as “the lem” and “parallel or
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Test Requirement: Write a function to check whether the entered number is greater than the elements of the given array.

» Write a function to convert camel case string to > Write a function to check whether the given » Write a function to check if each element of
snake case string by using regex. number is armstrong or not. the second tuple is greater than its

» Write a function to calculate volume of a »  Write a function to find the lem of the given corresponding index in the first tuple.
tetrahedron. array elements. » Write a function to find the difference between

» Write a Java function to find the sum of fourth »  Write a Java function to check whether two largest and smallest value in a given array.
power of first n even natural number. given lines are parallel or not. » Write a function to find the index of the first

occurrence of a given number in a sorted array.

(a) Random (b) BM25 (AceCoder) (c) LAIL

Fig. 1. Exhibition of the selected top-3 demonstration examples for the test requirement “Write a function
to check whether the entered number is greater than the elements of the given array” by different example
selection approaches, including random selection, AceCode, and LAIL. Concretely, subfigure (a) shows the
selected top-3 examples for the test requirement with random selection approach, subfigure (b) demonstrates
the selected top-3 results of AceCoder (BM25) approach for the test requirement, and subfigure (c) exhibits
the retrieved top-3 examples for the test requirement by LAIL. Note that in order to save space, we only
provide NL requirements of selected demonstration examples, not providing corresponding programs of these
selected examples.

not,” do not support implementing the test requirement. Although one may remedy it by inputting
more examples in the prompt, it is highly impractical due to the limited input length of LLMs.

To address the above problem, we propose a Large language model-Aware example selection
approach for In-context Learning-based code generation, named LAIL. Different from existing
selection approaches [23, 38], LAIL considers the needs of LLMs and leverages LLMs themselves
(LLM-aware) to select different external materials (i.e., different candidate examples) from a code-
base. The idea is inspired by how humans solve problems: for a problem, they refer to different
external materials from the same external knowledge base according to their own needs and back-
ground to figure out the problem, since they are equipped with disparate knowledge. Similar to
humans, LLMs are diverse in model structure, model size, and training sources. They typically need
different external knowledge to generate desired programs for a specific requirement. Given a re-
quirement, a good selection approach should consider the needs (referred to as preferences) of LLMs.

The pipeline of LAIL consists of three stages. (A) Estimating Examples with LLMs. We first require
LLMs themselves to label a candidate example as a positive example or a negative example for a
requirement. Positive examples are helpful for LLMs to implement the requirement, while negative
examples are trivial and should be ignored. Specifically, for each requirement, we calculate LLMs’
generation probabilities of ground-truth programs based on a candidate example. We then design a
new metric to quantify the probability feedback. The candidate examples with higher metric scores
are positive examples, meanwhile examples with lower scores are negative examples. (B) Learning
a Model-Aware Retriever. Depending on labeled positive and negative data, we train a model-
aware retriever to learn the preferences of LLMs for ICL-based code generation. (C) Generating
Programs. During the inference, given a test requirement, LAIL uses the trained retriever to select a
few examples and feed them into LLMs for generating desired programs. Compared to existing
approaches [23, 38], LAIL takes into account the needs of LLMs by making LLMs themselves
evaluate candidate examples, thus the selected examples can effectively prompt LLMs to predict
correct programs. Figure 1(c) illustrates the selected top-3 demonstration examples by LAIL; we
can observe that the selected examples provide efficient information to LLMs for resolving the test
requirement including operating on the array and comparing the value of two numbers. Besides,
although the textual similarities between the test requirement and the selected examples are low,
these examples still contain comparison operations for numbers as shown by underlines.
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We evaluate LAIL on four advanced LLMs including CodeGen-Multi-16B [74], CodeLlama-7B
and -34B [60], Text-davinci-003 [24], and GPT-3.5-turbo [9]. We conduct extensive experiments on
five datasets (i.e., MBJP (Java) [3], MBPP (Python) [4], MBCPP (C++) [3], HumanEval (Python)
[11], and DevEval (Python) [36]). We use a widely used evaluation metric Pass@k (k=1, 3, 5) to
measure the performance of different approaches. We obtain some findings from experimental
results. @ In terms of Pass@1, LAIL significantly outperforms the SOTA baselines (e.g., AceCoder
[38] and TOP-k-GraphCodeBERT [28] described in Section 4.4) by 11.58%, 3.33%, and 5.07% on
CodeGen-Multi-16B, 1.32%, 2.29%, and 1.20% on CodeLlama-34B, and achieves 4.38%, 2.85%, and
2.74% improvements on Text-davinci-003 at MBJP, MBPP, and MBCPP, respectively. @ Besides
function-level code generation, LAIL acquires 10.04%, 8.12%, and 4.63% improvements on DevEval,
a repository-level code generation dataset, compared to the SOTA baseline (i.e., TOP-k-SBERT) at
CodeLlama-7B in terms of Pass@1, 3, and 5. ® We conduct a human evaluation to measure generated
programs in three aspects (e.g., code correctness, quality, and maintainability). The programs of
LAIL are more in line with the preferences of humans. @ LAIL has satisfactory transferability across
LLMs and datasets where the retriever learned on one LLM/dataset can be transferred to other
LLMs/datasets. @ We investigate the effectiveness of LLMs’ probability feedback in estimating
examples and compare it to the other three estimation designs.

We summarize our contributions in this article as follows:

—We investigate example selection for ICL-based code generation and argue that a good
approach should take into account what knowledge LLMs themselves need.

— We propose a model-aware selection approach for ICL-based code generation dubbed LAIL.
LAIL uses LLMs themselves to estimate examples. LLMs depending on their needs label a
candidate example as a positive example or a negative example for a requirement. Based on
labeled data, it optimizes a model-aware retriever to learn the preference of LLMs.

— We evaluate LAIL on four advanced LLMs and conduct extensive experiments on five datasets.
Qualitative and quantitative experiments reveal that LAIL significantly outperforms the SOTA
baselines and generates more correct programs.

We open-source our replication package!, including the datasets and the source code of LAIL,
to facilitate other researchers to repeat our work and evolve the code generation community.

2 Background
2.1 LLMs

In this section, we focus on LLMs that have code generation ability. LLMs are large-scale networks
that aim to learn the statistical patterns in programming languages [2]. They are usually pre-trained
on a large amount of unlabeled code corpus with the next token prediction objective. Formally,

given a program with the token sequence C = {cy, ¢, - - - , ¢}, LLMs are trained to predict the next
token based on some previous tokens:
Lytp(C) == ) logP(eilcij -+ ,¢i-1:0) ()
i

where j is the window length of previous tokens, and ® means parameters of the LLM.

After being pre-trained, LLMs are adapted to a specific downstream task. At the beginning
stage, LLMs are used in a fine-tuning manner, which are continually optimized on specific code
generation datasets. With the size of LLMs growing rapidly such as CodeLlama [60] and CodeGen
[74], fine-tuning is neither economical nor practical, in contrast, a convenient solution ICL arises.

https://figshare.com/s/e31a72833191ead015ad.
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22 ICL

ICL refers to an emerging ability of LLMs, which allows LLMs to learn tasks given only a few
demonstration examples in the form of prompt context [8]. Formally, given a few requirement-code
examples T = {xx, yx };_,, a test requirement x;, and an LLM with frozen parameters ©, ICL defines
the generation of a program y; as follows:

Yr ~ P(yel x1, 91+, X, Yms X1, ©) (2)
—_——
context
where ~ represents decoding strategies such as greedy decoding and nuclear sampling [29] in code
generation. The generation procedure is attractive because the parameters of LLMs do not need to
be updated when executing a new task, which is efficient and practical.

According to the number of demonstration examples in the prompt context, ICL generally
contains different scenarios: (a) Few-shot learning allows a few demonstration examples as the
prompt context where the token length of all examples fits into the model’s context window. LAIL
is a kind of few-shot learning, which designs a model-aware selection approach to retrieve several
examples from a codebase for ICL-based code generation. (b) One-shot learning contains only
one demonstration example as the prompt context. LLMs concatenate a new requirement and the
prompt context as the input, and then output programs for the new requirement. (c) Zero-shot
learning allows no demonstration examples to be input LLMs. Only a new requirement and an
instruction in natural language are fed into LLMs, where the instruction is not necessary.

3 Method: LAIL

Considering that LLMs are diverse in model structure, model size, and training sources, they
typically need different external knowledge to generate desired programs for a requirement. Given
a requirement, a good selection approach should consider the needs (referred to as preferences)
of LLMs. In this section, we propose an LLM-Aware example selection approach for ICL-based
code generation named LAIL. In ICL-based code generation, a candidate example pool is necessary
where a few demonstration examples are selected from it. Similar to existing work [38], we use
the training set of a dataset as the candidate example pool instead of collecting candidates from
scratch. Given a test requirement, LAIL selects a few demonstration examples from the candidate
pool (i.e., the training set) and then inputs these selected examples and the test requirement into
LLMs to generate desired programs.

Different from existing example selection approaches [38], LAIL uses LLMs themselves (LLM-
aware) to select examples based on their needs. The pipeline of LAIL contains three stages. Con-
cretely, LAIL requires LLMs themselves to estimate a candidate example in the candidate pool by
calculating the prediction probability of the ground-truth program based on the test requirement
and the example, then labels the candidate example being positive or negative depending on the
probability feedback. Following the above process, we traverse the entire candidate pool and acquire
the final labeled data (Section 3.1). Based on the labeled positive and negative data, LAIL trains a
model-aware retriever to align with the preference of LLMs (Section 3.2). During the inference,
given a requirement of the test set, LAIL uses the trained retriever to select a few examples from
the candidate pool (i.e., the training set) and concatenates them together as the prompt context for
ICL-based code generation (Section 3.3). The overview of LAIL is shown in Figure 2.

3.1 Estimating Examples with LLMs

In this section, we make LLMs themselves (LLM-aware) estimate candidate examples based on their
needs. Considering that the candidate examples that LLMs need can facilitate LLMs to generate
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Fig. 2. The overview of LAIL. (a) LAIL uses LLMs themselves to estimate candidate examples and label them
as positive or negative. (b) Based on the label date, LAIL then trains a model-aware retriever to align with
the preference of LLMs with a contrastive loss. (c) Given a test requirement, the optimized retriever selects
several examples that are inputted to LLMs for code generation.

SIS
(' : [wtp) )

correct programs, we use the prediction probability of the ground-truth program as the feedback
of LLMs. Like existing studies [38], we treat the training set of a dataset as the candidate example
pool. To estimate the candidate examples, for a requirement in the candidate pool, LAIL requires
LLMs themselves to estimate the remaining examples of the candidate pool by calculating the
prediction probability of generating ground-truth programs based on the requirement and each
remaining example. The higher the probability is, the better the example can meet the needs of
LLMs for solving the task. According to the probability feedback, we then label the remaining
candidate examples into positive and negative examples. Positive examples are helpful for LLMs to
generate correct programs, while negative examples are trivial and should be ignored. Following
the above labeling process, we traverse the entire candidate pool and acquire the final labeled data.
Based on the labeled data, LAIL trains a model-aware retriever to learn the needs (referring to
preferences) of LLMs in Section 3.2.

Since the size of the candidate pool commonly is large, the cost to traverse all examples is high.
We introduce a two-stage process to estimate candidate examples in the training set, where we first
filter out a few candidate examples for a specific requirement, and then estimate the remaining
examples with LLMs themselves.

In the first stage, for each programming task in the training set, to acquire its demonstration
examples, we first use BM25 [59] to filter out a portion of the remaining examples. The reason
we use BM25 is that it is easy to implement and is effective in filtering hard negative examples
which calculates the n-gram matching between texts. Concretely, the training set is R = {e;}",
where e; is the ith requirement-code example (x;, ;) in R. For an example e; = (x;,y;), we use
BM25 to calculate the textual similarities between x; and x;, where i # j, and then acquire its score

set B; = {b J}j\:l According to the score set B;, we sort b; from high to low and only keep the first

t examples as the set S; = {(xf], yfl)};:l, where ¢ < N. It is worth noting that LAIL is different from

the existing BM25 selection approach [38] that uses BM25 to sort all examples. LAIL only uses
BM25 to filter out the hard negative examples, meanwhile, retains the soft positive examples. Then,
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Xq | Vg Xi | Vi | wmp =) | Zi
Ground truth LLM Output sequence

Fig. 3. The illustration of the input and output of LLMs in estimating a candidate example with LLMs
themselves.

LAIL makes LLMs themselves estimate these soft positive examples and selects a few candidate
examples they need for generating correct programs.

In the second stage, LAIL uses LLMs themselves to estimate the soft positive examples. Specifically,
to accomplish the requirement x;, we first use LLMs to measure the needs of LLMs for each example
(x¢,yp) in S;. We concatenate the candidate example (x, y;) and the requirement x; and input
them into LLMs. Meanwhile, we set the length of the output sequence z; to 0 since the prediction
probability of y; is determined by LLMs, having nothing to do with the output. The input and output
of LLMs are shown in Figure 3. Next, we calculate the prediction probability of the ground-truth
program y;. We design an estimation metric G to quantify the probability feedback, which is defined
as follows:

1 S
Gq = il X Prim(Yilxg, yg i) ®3)
1
o lyil o
P (yilxl, vl xi) = D 1og(p(tiulxdy Yy % ti<u) (4)
u=1

where y; = {t1,- -+, tp} and £, is the uth token in y;. The higher the metric is, the more LLMs need
the example for completing the requirement x;. Finally, we obtain the estimation set { Qq};:I for
the requirement x;.

Based on this, we rank all examples in the set S; according to their metric scores in {Qq};:l.

The top-z examples with higher scores are inputted into the positive example set S‘f , meanwhile,
the bottom-v examples constitute the soft negative example set S since good examples should be
beneficial for LLMs to generate correct programs. We apply this two-stage procedure to the entire
training set and finally acquire the labeled data D:

D = {(ex {S".SI D}, (5)

where e; = (x;,y;) is the ith examples in the training set. Sf and S} are the positive and negative
example set of e;, respectively. N is the number of examples in the training set R.

Our labeled data are consistent with the preference of LLMs, where the needful examples with
the high estimation metric are treated as positive examples and the candidates helpful less are
labeled as negative examples.

3.2 Training a Model-Aware Retriever

As described in Section 3.1, the labeled data can reflect the preference of LLMs. In this section, we
use the labeled positive and negative data to train a model-aware retriever, aiming to align with
the preference of LLMs. After being trained, given a test requirement, the retriever can select a set
of demonstration examples that are beneficial for LLMs to generate correct programs.

We use the multi-layer bidirectional Transformer [70] as the backbone of the retriever. The
retriever consists of a 12-layer Transformer with 768 hidden size and 12 attention heads in each
layer. To learn the preferences of LLMs, we introduce a contrastive learning objective, because it
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can extract similar items and distinguish the dissimilar items on a specific dimension. In our article,
the objective target is to acquire the candidate examples that LLMs need. We initialize the retriever
with GraphCodeBERT [28] and further train it with contrastive learning. For an example e; in the
labeled data D, we randomly select a positive example ef from Sf . Meanwhile, we randomly choose
a candidate example e}’ from the soft negative set S and select h hard negative examples from
the set H (e.g., H =R\ S;) as its negative example set N;. Next, we apply the retriever to encode
the requirements of these examples and acquire their representations, individually. Specifically,
for the example e;, we utilize Byte-Pair Encoding algorithm [63] to tokenize the requirement
of e; and acquire a sequence of tokens {ci,l, Ci2s vens cl-,,,c}, where n, denotes the sequence length.
Then, a classification symbol [CLS] and a segment separation symbol [SEP] are concatenated to
the sequence, forming the input as {[CLS], ¢; 1, ¢i2, ..., Cin., [SEP]}. The output of the retriever is
the vector representation of the requirement, i.e., {EfCLs]’ E, ... Eflc, EfSEP] }. We perform the same
pre-processing procedure for the requirements of positive and negative examples, respectively, and
acquire the vector representation of the requirement for each positive or negative example, denot-

ing as {Ei’p EMP, .. Ei,f; EMP } and {Ei’" BN E;,;l ER } respectively. Following previous

[cLs]? 1 [SEP] [cLsp’ 1 [SEP] [
works [21, 28], we utilize EE cLsp Ei’g_s ) and El[’(?LS | as the entity representation of the requirement

of e;, e‘f ,and e}’ since they are the aggregated representations. Finally, we model the relations of
these representatives with contrastive loss. Following SimCLR [12], the learning objective L is
formulated as:

. ip
eS(EiCLS]’ E[CLS])/T

L =-log (6)

s(EL ., EX* )/t
E ; [cLs]> ~[cLs]
Ebn EN_e

[cLs] 4

where 7 is a temperature parameter. E[¢ 5] means the representation of a requirement. s(-) calculates
the cosine similarity of two vectors.

Based on the objective, the retriever learns the preference of LLMs. For a test requirement, the
model-aware retriever is able to select examples that LLMs need from the training set, helping
LLMs generate correct programs.

3.3 Generating Programs

During the inference, instead of using heuristic approaches, we apply the trained retriever to select
a few examples from the training set, which can retrieve examples with high metric scores for a
test requirement and then provide useful demonstration examples to LLMs for ICL-based code
generation. Specifically, we first feed requirements in the training set R to the trained retriever

individually and acquire their representational vectors {Eél_s}l.zl. Given a test requirement x;, we

obtain its representation Ef, ¢ by using the retriever. Then, we match Ef, ¢ and Ef ¢ and thus lead

to N pairs of representations {(Eél_s, E’CLS)}izl. We calculate their cosine similarities {ci}f\il of all

pairs and rank candidate examples according to their similarity scores from high to low. The top-r
examples are selected for ICL-based code generation.

After acquiring demonstration examples, we concatenate the top-r examples as sequence
{e1;--- ;e;;--- ; .} where their similarity scores gradually decrease (e.g., ¢c; < ¢; < ¢,). The
sequence and the test requirement x; are then concatenated as a sequence. Finally, we feed the
sequence into LLMs and make LLMs generate programs with nuclear sampling [29] as described in
Equation (2). The generation process is presented in Figure 4.

Note that LAIL only needs to encode examples in the training set one time. Given a test require-
ment, LAIL just calculates cosine similarities between it and all candidates.
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def second_smallest(numbers):
Write a function to find the second smallest number in a list.
if ((len(numbers)==2) and (numbers[@] == numbers[1])):
def larg;;;_pos(listl):
’_ @ Write a python function to find the largest postive number from the given list.

Selected Examples 1ax = listile]
for x in listl:

def smallest_Divisor(n):

Write a python function to find the smallest prime divisor of a number.

Input
if (n %2 == 0):
return 2

@ def smallest_num(xs):
. Write a python function to find smallest number in a list.
_— Test Requirement wun

!

@ LLM

I

min = xs[@]

@ for x in xs:
Output if x < min:

Generated Program min = x
return min

Fig. 4. The illustration of ICL-based code generation.

4 Experimental Setup

To investigate the effectiveness of LAIL, we perform a large-scale study to answer four research
questions. In this section, we describe the details of our study, including datasets, evaluation metrics,
baselines, base LLMs, and experimental details.

4.1 Research Questions

Our study aims to answer the following research questions.

RQ1: How does LAIL perform compared to the SOTA baselines? This RQ aims to verify that LAIL can
generate more correct programs than SOTA baselines. We apply four widely used LLMs to evaluate
our approach. We compare LAIL to seven baselines in four datasets. These datasets cover multiple
mainstream languages, including Java, Python, and C++. Then, we measure the correctness of
generated programs with the Pass@k metric. For the Pass@k metric, higher scores indicate the
better performance of approaches.

RQ2: Do developers prefer programs generated by LAIL? The ultimate goal of a code generation
model is to assist developers in writing programs. In this RQ, we hire 10 developers to manually
estimate the programs generated by LAIL and baselines. We evaluate generated programs in three
aspects, including correctness, code quality, and maintainability.

RQ3: How effective is the probability feedback of LLMs to estimate examples? As described in
Section 3.1, we leverage the prediction probability of ground-truth programs to estimate candidate
examples. In this RQ, we explore the effectiveness of LLMs’ probability feedback in estimating
candidate examples and compare it with other estimation designs, aiming to provide in-depth
insights to researchers in selecting demonstration examples for ICL-based code generation.
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Table 1. Statistics of Three Code Generation Datasets on the Different Split Sets

MBJP MBPP MBCPP HumanEval DevEval

Language Java ‘ Python | C++ Python Python
#Train 383 384 413 - -
#Valid 90 90 - - -
#Test 493 500 435 164 1,874
Avg. test cases of examples 3 3 3 7.7 -
Avg. tokens of requirements  16.71 | 16.50 17.38 37.2 91.5
Avg. tokens of programs 247.79 | 92.68 113.94 244 -

Avg. represents “Average.”

RQ4: What is the performance of LAIL on the repository-level code generation? In addition to
function-level code generation, we also apply LAIL to the repository-level code generation dataset,
in order to evaluate the effectiveness of our approach on the complex real-world programming
scenario. We treat functions contained in the repository as the candidate pool. Then, LAIL retrieves
a few functions from the candidate pool as demonstration examples. To avoid the impact of
context programs on results, in this article, LLMs generate programs based on the requirement,
corresponding signatures, and a few demonstration examples. We then input the generated programs
into the needed position of the repository and use test cases to evaluate their correctness.

4.2 Datasets

We evaluate LAIL on three mainstream languages, e.g., Java, Python, and C++. Concretely, we
select five representative datasets, including MBJP [3], MBPP [4], MBCPP [3], HumanEval [11],
and DevEval [36]. The statistics of these datasets are presented in Table 1.

MBPP [4] contains 974 Python programming problems constructed by crowd-sourcing. Each
example consists of a brief description, a single self-contained function solving the problem specified,
and three test cases to evaluate the correctness of the generated programs. The problems range
from simple numeric operations or tasks that require the basic usage of standard library functions
to tasks that demand nontrivial external knowledge.

MB7P [3] and MBCPP [3] have 966 and 848 crowd-sourced programming problems in Java and
C++, respectively. Each problem consists of a single self-contained function, three test cases,
and a text description that has typically one sentence each. These problems mainly consist of
mathematical manipulations, list processing, string processing, and other data structures. We follow
previous studies [3, 4] to split the above three datasets into the training set, the valid set, and the
test set, respectively. We measure the performance of different ICL approaches on the test set.

HumanEval [11] is a Python code generation dataset, which contains 164 hand-written program-
ming problems. Each programming problem consists of a natural language requirement, a function
signature, and several test cases, with an average of 7.7 test cases per problem.

DevEval [36] is a repository-level code generation dataset, which is collected from real-word
code repositories. The dataset aligns with real-world code repositories in multiple dimensions,
e.g., real code distributions, sufficient dependencies, and real-scale repositories. It comprises 1,874
testing samples from 117 repositories. Each repository contains 243 files, 45,941 program lines,
and 4,672 code dependencies on average. In this article, we randomly select two domains from
this dataset to evaluate LAIL and baselines, including the scientific engineering domain and text
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processing domain. We randomly split the tasks of the two domains into the training set and the
test set. Finally, we acquire 101 examples in the training set and 49 examples in the test set.

4.3 Evaluation Metrics

Following previous code generation studies [3, 11], we use the pass rate (e.g., Pass@k) to evaluate
LAIL. Pass@k evaluates the functional correctness of the generated programs by executing test
cases, which is a strict metric. Precisely, given a test requirement, we generate k programs with the
sampling strategy. If any of the generated k programs passes all test cases, we think the requirement
is solved. Finally, the percentage of solved requirements in all test requirements is treated as Pass@k.
In this article, we set k to 1, 3, and 5.

4.4 Baselines

There are a few studies to investigate example selection for ICL-based code generation, includ-
ing zero-shot learning [8], random selection [11], and AceCoder [38]. Among these approaches,
AceCoder [38] is the SOTA baseline. Note that Gao et al. [23] empirically explore the impact of
demonstration examples on ICL in code intelligence tasks and provide some important findings.
However, this study does not aim to provide a systematical selection approach, thus we do not
employ it as the baseline in this article.

Zero-shot learning [8] directly inputs a requirement into LLMs without any examples as the
prompt. LLMs directly generate programs for the given requirement.

Random [11] selection randomly retrieves a few examples from the training set. Then, the selected
examples and the test requirement are fed into LLMs. Finally, LLMs predict the source code based
on the prompt without any parameter update.

AceCoder [38] uses BM25 [59] to calculate the textual similarities between a test requirement and
the requirements of candidates. Then, it retrieves a set of examples equipped with high similarities
from the training set.

To extensively evaluate the effectiveness of LAIL, we also transfer some advanced ICL approaches
in natural language processing to the source code.

TOP-k-SBERT [47] leverages Sentence-BERT [57], a representative sentence encode, to encode all
requirements in the training set. Given a test requirement, we first encode it and compute semantic
similarities between it and the training requirements. Next, we select the top-k similar examples to
prompt LLMs in code generation.

TOP-k-GraphCodeBERT [28] is a variant of TOP-k-SBERT. It applies GraphCodeBERT [28] to
encode requirements and retrieve a few examples from the training set based on semantic similarity.

TOP-k-VOTE [64] is a graph-based method [64] to vote examples. It first encodes each example
by GraphCodeBERT [28], and each example is a vertice in the graph. Each vertice connects with its
k nearest vertices based on their semantic similarities. Finally, the approach treats the k nearest
candidates as demonstration examples.

Uncertainty-Target [15] assumes that examples with higher uncertainty have a greater impact on
LLMs. It defines uncertainty as the perplexity when LLMs generate ground truths. The approach
computes the uncertainty of each candidate and selects k items with high perplexity as a prompt.

4.5 Base LLMs

This article focuses on code generation with LLMs. Thus, we select four popular LLMs for code
generation as the base models, including CodeGen-Multi-16B [74], CodeLlama-7B and -34B [60],
Text-davinci-003 [24], and GPT-3.5-turbo [9]. The details of the base models are shown as follows:
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CodeGen-Multi-16B [74] is a language models for code generation. CodeGen is trained with a
635GB code corpus and 1,159GB English text data. In this article, we leverage the largest version
with 16 billion parameters as the base model.

CodeLlama-7B and -34B [60] is for source code based on Llama 2 [45], providing impressive
performance among open models by applying the training and fine-tune procedures. It is trained
on the sequence of 16k tokens and achieves improvements on inputs with up to 100k tokens.

Text-davinci-003 [24] is a closed-source LLM. It is trained on a large unlabeled multimodel corpus
with 175 billion parameters, supporting the natural language and programming language. In this
article, we use OpenAl’s APIs to access it.

GPT-3.5-turbo [9] is a powerful language model for code generation. It is trained on much natural
language text and programming data. Then, it is continually trained with reinforcement learning
and learns to align with human instructions. In this article, instead of selecting GPT-4 [25], we
import OpenATI’s APIs to access GPT-3.5-turbo because we have limited expenses.

4.6 Implementation Details

Estimating Examples with LLMs. When collecting the predicted probabilities of ground-truth pro-
grams, we feed a requirement and a candidate example into LLMs and set the length of generated
programs as 0 since the predicted probabilities of input are determined by LLMs and are indepen-
dent of output. For efficiency, the number of examples in the set S; is 50 since it is efficient enough
meanwhile has a high probability of containing positive samples. We set the number of the positive
example set Sf and the soft negative example set ST as 5, respectively. Besides, we analyze their
effects on code generation performance in Section 6.3.

Learning a Model-Aware Retriever. In this procedure, we set the number of the negative example
set N; as 64, that is, the number of hard negative examples h is set to 63. For each epoch, we
randomly select 63 hard negative examples from the set H and choose 1 soft negative example
from S?. We also attempt to set the size of N; to 32 and 128. The analysis results are shown in
Section 6.3. The learning rate is 5e-5 and the batch size is 32. We train the neural retriever for about
1hour on 4 NVIDIA A100.

Generating Programs. We treat the LLM as a black-box generator and sample programs from
it. The input of LLMs only contains demonstration examples and a test requirement without any
natural language instructions. During generation, we use nuclear sampling [29] to decode, where
the temperature is set to 0.8 and the top-p is set to 0.95. The maximum generated length is 500
tokens. For each test requirement, we generate five programs. For a fair comparison, we set the
same parameters to generate programs for all baselines and LAIL.

5 Results and Analysis
RQ1: How Does LAIL Perform Compared to the State-of-the-Art Baselines?

In RQ1, we apply LAIL and baselines to three LLMs including CodeGen-Multi-16B [74], CodeLlama-
7B and -34B [60], and Text-davinci-003 [24]. Because the closed-source GPT-3.5-turbo [9] cannot
provide the prediction probability of the ground-truth program, we do not present the results of
LAIL on this base model. In Section 6, we further analyze the performance of GPT-3.5-turbo [9]
based on the feedback of other LLMs.

Results. Tables 2—4 and 6 report the Pass@k (k € [1, 3, 5]) of different approaches on MBJP, MBPP,
MBCPP, and HumanEval datasets, respectively. The human evaluation results for all approaches
are presented in Appendix A. Numbers in bold mean the best performances among LAIL and
baselines. The percentages represent the improvements from the best performances of baselines
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Table 2. Evaluation Results of LAIL and Baselines on CodeGen-Multi-16B at MBJP, MBPP, and MBCPP

MBJP MBPP MBCPP

Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5
Zero-shot learning [8] 14.27 23.69 27.83 8.80 20.60 25.60 15.39 25.97 30.94
Random [11] 15.74 24.25 28.14 15.20 25.40 28.40 15.70 28.72 32.25
AceCoder [38] 17.65 27.18 30.63 16.80 26.40 29.80 17.47 30.11 36.47
TOP-k-SBERT [47] 16.63 26.77 29.21 15.40 25.00 29.80 18.09 29.43 33.33
TOP-k-GraphCodeBERT [28] 17.44 24.34 28.40 18.00 25.80 28.40 18.16 30.68 36.35
TOP-k-VOTE [64] 15.42 21.70 23.73 17.40 26.00 29.40 17.01 30.03 35.63
Uncertainty-Target [15] 17.09 23.06 27.93 14.60 24.20 28.80 17.70 30.35 35.78
LAIL 21.30 28.49 32.05 18.60 27.80 30.60 19.08 31.36 37.94

(111.58%) (14.82%) (14.64%) (13.33%) (16.92%) (12.68%) (15.07%) (12.21%) (]4.03%)

Numbers in bold indicate the best performances among LAIL and all baselines in terms of Pass@k (i.e., k=1, 3, and 5). “1”
means the relative improvements from the best results among baselines to LAIL.

Table 3. Evaluation Results of LAIL and Baselines on CodelLlama-34B at MBJP, MBPP, and MBCPP in Terms
of Pass@k (i.e., k=1, 3, and 5)

MBJP MBPP MBCPP
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5
Zero-shot learning [8] 10.95 24.14 33.06 5.40 14.20 19.20 0.23 0.23 0.92
Random [11] 37.93 53.35 57.81 32.00 47.80 53.20 37.93 54.25 61.15
AceCoder [38] 44.85 57.26 60.40 34.60 45.40 50.80 42.76 55.86 59.54
TOP-k-SBERT [47] 42.72 56.58 59.97 34.80 48.20 52.20 43.14 56.08 60.27
TOP-k-GraphCodeBERT [28] 42.19 56.39 59.43 35.00 48.20 52.00 43.45 56.55 61.60
TOP-k-VOTE [64] 43.20 56.99 60.26 34.20 45.00 49.20 38.39 53.33 58.62
Uncertainty-Target [15] 37.73 50.91 56.39 29.40 44.20 49.20 2.30 5.29 8.05
LAIL 45.44 57.81 61.26 35.80 48.80 52.80 43.97 57.04 62.03

(1 1.32%) (10.96%) (1142%) (12.29%) (11.24%) (11.15%) (11.20%) (10.87%) (]0.70%)

Numbers in bold indicate the best results among all approaches and “1” means the relative improvements compared to the
best performances of baselines.

to the counterpart of LAIL. We use T-tests as the statistical tests and calculate Cohen’s d as effect
size to measure the validity of our experimental results. P-value is smaller than 0.05 on the four
datasets in terms of Pass@k (i.e., k=1,3,5). Cohen’s d of each dataset on Pass@k is larger than 0.7.

Analyses. (1) LAIL achieves the best performance among all approaches. In all datasets, LAIL
generates more correct programs than baselines. Compared to the best results of baselines, LAIL
outperforms them by 11.58%, 3.33%, and 5.07% on CodeGen-Multi-16B, 1.32%, 2.29%, and 1.20%
on CodeLlama-34B, and acquires 4.38%, 2.85%, and 2.74% improvements on Text-davinci-003 in
terms of Pass@1 on MBJP, MBPP, and MBCPP, respectively. LAIL achieves 1.53% improvements on
HumanEval in Pass@1 when CodeLlama-7B is the base model. Note that Pass@1 is a very strict
metric and is difficult to improve. The significant improvements prove that LAIL can select proper
examples and help LLMs generate more satisfying programs. (2) Selecting proper demonstration
examples is critical to the performance of ICL-based code generation. For instance, compared to
random selection, LAIL acquires 35.32%, 22.37%, and 21.53% improvements in Pass@1 on CodeGen-
Multi-16B in the MBJP, MBPP, and MBCPP datasets. Subsequently, AceCoder and other heuristic
approaches further improve code generation performance by selecting textually or semantically
similar examples. Considering the needs of LLMs, LAIL uses LLMs themselves to estimate examples
and trains a model-aware retriever to learn the preference of LLMs, achieving the best results
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Table 4. The Performance of Our LAIL and Baselines on Text-davinci-003 at MBJP, MBPP, and MBCPP in
Terms of the Pass@k (i.e., k=1, 3, and 5) Metric

MBJP MBPP MBCPP
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5
Zero-shot learning [8] 44.83 53.05 59.72 20.00 27.00 29.60 21.85 37.94 49.90
Random [11] 47.87 59.83 63.69 43.00 56.40 60.80 50.02 61.43 65.28
AceCoder [38] 50.91 61.25 65.15 47.40 61.00 64.20 53.25 63.22 66.21
TOP-k-SBERT [47] 50.30 60.46 64.70 49.00 61.40 64.00 52.87 63.21 67.13
TOP-k-GraphCodeBERT [28] 50.30 60.85 64.50 49.20 58.20 64.20 52.64 63.19 67.28
TOP-k-VOTE [64] 50.52 60.45 63.49 47.80 59.20 63.40 51.03 62.98 65.51
Uncertainty-Target [15] 47.67 59.23 63.69 37.80 51.40 57.80 42.87 52.60 57.18
LAIL 53.14 62.87 66.72 50.60 62.40 65.20 54.71 65.98 69.67

(14.38%) (12.64%) (12.41%) (12.85%) (11.63%) (1153% (12.74%) (14.37%) (13.55%)

“1” represents the relative improvements compared to the SOTA baseline. Numbers in bold mean the best performances
among all approaches.

among all approaches. That demonstrates the importance of selecting proper examples in ICL and
verifies the reasonability of using LLMs themselves to estimate examples. (3) LAIL is effective in
LLMs with different sizes and different programming languages. As described above, our approach
achieves impressive performance on all base LLMs. Besides, Tables 2-4 and 6 also show that LAIL
can generate more correct programs in different mainstream languages including Java (MBJP),
Python (MBPP and HumanEval), and C++ (MBCPP). This reveals that LAIL has good generalization
ability and can be applied to different LLMs and languages.

In Table 3, we find that the Uncertainty-Target approach performs poorly on the MBCPP dataset,
only resulting in 2.30% in terms of Pass@1. The approach selects a few examples with high uncer-
tainty, and then, the selected examples are applied to all test requirements. We carefully analyze the
demonstration examples and generated programs in the approach. The programs in demonstration
examples have two common features: being very short and only containing simple operations
such as “return null” We observe that the generated programs are biased by the two features. They
are similar to the programs in the demonstration examples and thus cannot implement the test
requirements.

Answer to RQ1: LAIL achieves the best results compared to all baselines and has
good generalization ability. In MBJP, MBPP, and MBCPP datasets, LAIL acquires
11.58%, 3.33%, and 5.07% improvements on CodeGen-Multi-16B, 1.32%, 2.29%, and
1.20% on CodeLlama-34B, and achieves 4.38%, 2.85%, and 2.74% improvements on
Text-davinci-003 at Pass@1. In HumanEval, LAIL achieves 1.53% improvements
on CodeLlama-7B in terms of Pass@ 1. The impressive improvements prove that
our approach can effectively learn and align with the needs of LLMs. Thus, LAIL is
able to select suitable examples for ICL-based code generation.

RQ2: How Effective Is the Probability Feedback of LLMs to Estimate Examples?

In this RQ, we aim to evaluate the effectiveness of LLMs’ probability feedback in estimating
candidate examples. In LAIL, we require LLMs themselves to estimate a candidate example by
calculating the prediction probability of the ground-truth program based on a requirement and the
candidate example. Besides the probability feedback, there are other perspectives to estimate the

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 190. Publication date: August 2025.



Large Language Model-Aware In-Context Learning for Code Generation 190:15

ability of candidate examples in promoting LLMs’ coding ability, including the similarity between
the generated code and the ground-truth code, and the functional correctness of the generated
programs. In the code generation task, BLEU and CodeBLEU are commonly used to evaluate the
similarity between the generated program and the ground-truth program, meanwhile, Pass@k is
usually applied to calculate the functional correctness of the generated code by using test cases.
Therefore, we introduce BLEU, CodeBLEU, and Pass@k to estimate the ability of candidate examples
in promoting LLMs’ coding ability from different perspectives, aiming to inspire developers to
select the appropriate approach to evaluate candidate examples in ICL-based code generation.
We conduct extensive experiments to explore and analyze the effectiveness of these designs in
measuring candidate examples with LLMs themselves.

Results. We explore three other designs to estimate examples in this RQ, including the Match-
BLEU, Match-CodeBLEU, and Match-Pass@k designs based on BLEU, CodeBLEU, and Pass@k.
We first present the definitions of BLEU, CodeBLEU, and Pass@k and then describe Match-BLEU,
Match-CodeBLEU, and Match-Pass@k designs based on them. Specifically, BLEU [53] computes
the n-gram overlapping between the generated program and the ground truth, which can measure
the token-level similarity of two sequences. It is formulated as BP - exp(Zfl\L1 wplogp,), where N
is set to 4, BP is a brevity penalty to prevent generating very short programs, and p, represents
the n-gram matching precision score. CodeBLEU [58] is a version of BLEU and is designed for
source codes. This metric measures the n-gram match, the semantic match, and the syntactic match
between the generated code tokens and the reference code tokens. Pass@k computes the pass
rate of the generated codes that pass the unit tests. Concretely, models automatically generate
n programs for each requirement. A requirement is considered solved if any of the first k < n
generated programs can pass all the test cases. The percentage of solved requirements in total
requirements is treated as Pass@k. The Match-BLEU uses BLEU score of the generated program to
measure candidate examples. Specifically, in the second stage of Section 3.2, we input a candidate
example (xf], yfl) and a requirement x; into LLMs and acquire the generated program ;. Then, we
calculate the BLEU score 8, of the predicted program ;. The higher the BLEU score is, the more
LLMs need the candidate example for completing the requirement x;. We apply this process to the

candidate set S; and obtain the BLEU score set {Bq};=1' Finally, we label positive and negative

candidates for the requirement x; based on the BLEU score set {Bq};:r Similar to Match-BLEU,
the Match-CodeBLEU approach applies the CodeBLEU score of the predicted program to label
examples. The Match-Pass@k design uses the Pass@1 score of the generated program to assess
candidates. In this RQ, we use Text-davinci-003 and CodeGen-Multi-16B as the base LLMs and
evaluate their performance on the three datasets. The results of different estimation designs are
represented in Table 5. For comparison, Table 5 also presents the results of random selection. We
do not provide the performance of the Match-Pass@k in Text-davinci-003 since the model is not
available at the time we revise the article.

Analyses. (1) The probability-based approach of LAIL is more effective than Match-BLEU, Match-
CodeBLEU, and Match-Pass@k in estimating candidate examples. In all datasets, LAIL outperforms
them by 21.29%, 8.31%, and 15.49% on the three datasets at Pass@1 when CodeGen-Multi-16B is
the base model, respectively. The reason might be that the predicted probability of ground truth in
LAIL can accurately reflect how certain an LLM is for generating correct programs. The BLEU-
based and CodeBLEU-based methods can only reflect the literal accuracy of programs generated
by LLMs, but cannot provide how certain LLMs are when predicting programs. Similarly, the
Pass@k-based method can only reflect whether the generated program of LLMs is functionally
correct or not by using a few test cases, which still does not represent the certainty of LLMs when
generating programs. (2) Match-CodeBLEU approach is more effective than Match-BLEU method.
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Table 5. The Comparison of Different Designs to Estimate Examples on MJBP, MBPP, and MBCPP at
CodeGen-Multi-16B and Text-davinci-003 in Terms of Pass@k (i.e., k=1, 3, and 5)

MBJP MBPP MBCPP
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5
Text-davinci-003

Random [8] 47.87 59.83 63.69 43.00 56.40 60.80 50.04 61.45 65.28
Match-BLEU 50.19 59.87 63.92 46.20 60.20 62.40 50.26 61.47 65.73
Match-CodeBLEU 51.07 60.04 64.58 47.80 59.20 63.80 52.72 62.03 66.80
Match-Pass@k - - - - - - - - -

Probability-Based (LAIL) 53.14 62.87 66.72 50.60 62.40 65.20 54.71 65.98 69.67

(14.05%) (14.71%) (13.31%) (15.86%) (13.65%) (12.19%) (13.77%) (16.37%) (] 4.30%)
CodeGen-Multi-16B

Random [8] 15.74 24.25 28.14 15.20 25.40 28.40 15.70 28.72 32.25
Match-BLEU 16.35 25.41 29.06 15.40 25.40 28.60 16.43 30.10 34.02
Match-CodeBLEU 17.56 26.39 29.59 16.20 25.80 29.40 16.52 29.65 35.36
Match-Pass@k 15.83 24.71 28.68 14.60 25.20 28.00 16.08 29.48 34.21
Probability-Based (LAIL) 21.30 28.49 32.05 18.60 27.80 30.60 19.08 31.36 37.94

(121.29%) (17.96%) (13.31%) (18.31%) (114.81%) (17.75%) (115.49%) (14.18%) (1 7.29%)

The values in parentheses mean the improvements achieved by our probability-based design. “Probability-Based” represents
LAIL. Numbers in bold mean the best performances among all designs to estimate examples.

Match-CodeBLEU outperforms Match-BLEU on all datasets. We argue that BLEU can only measure
the n-gram similarity between the generated programs and the ground-truth source codes, while
CodeBLEU can measure the n-gram match, the semantic match, and the syntactic match between
the generated programs and the reference programs, which is more comprehensive for evaluating
the generated programs. (3) The performance of Match-Pass@k is worse than other designs including
Match-BLEU, Match-CodeBLEU, and the probability-based approach (LAIL). Because the Pass@1
results only have two values (i.e., 0 or 1) for a program. For each requirement, there are many
cases of generated correct programs (Pass@1=1) when different candidate examples are input into
LLMs, which leads to these candidate examples not being effectively ranked in terms of helping
LLMs generate correct programs according to Pass@1 scores.

Answer to RQ2: Probability-based approach is better than Match-CodeBLEU,
Match-BLEU, and Match-Pass@k designs. It can effectively reflect the LLMs’ pref-
erence for candidate examples given a test requirement.

RQ3: What Is the Performance of LAIL on the Repository-Level Code Generation?

In this RQ, we access the performance of LAIL on the repository-level code generation to evaluate
whether our approach can generalize to the complex real-world programming scenario.

Results. We evaluate LAIL and baselines on the DevEval dataset [36]. DevEval contains a lot of
real-world repositories collected from Github, where each repository has 243 files, 45,941 code lines,
and 4,672 dependencies on average. Given a requirement from a repository, we use tree-sitter? to
parse the repository and acquire all functions of the repository. We treat functions contained in
the repository as the candidate pool. Then, LAIL and baselines retrieve a few functions from the
candidate pool as demonstration examples. On average, each repository contains 1,957 functions.
We verify LAIL and baselines on CodeLlama-7B and use Pass@k to measure the correctness of
generated programs. The results of LAIL and baselines are shown in Table 6. The percentages in

https://github.com/tree-sitter/tree-sitter.
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Table 6. The Performance of LAIL and Baselines on the HumanEval Dataset at CodelLlama-34B and the
DevEval Dataset at CodeLlama-7B in Terms of Pass@k (i.e., k=1, 3, and 5)

HumanEval DevEval
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5
Zero-shot learning [8] 4.02 10.67 15.85 10.83 18.37 22.45
Random [11] 33.78 51.89 59.75 4.49 11.22 16.32
AceCoder [38] 35.43 53.46 60.97 9.79 16.53 18.37
TOP-k-SBERT [47] 33.78 52.87 60.98 12.24 22.65 26.53
TOP—k—GraphCOdeBERT [28] 35.43 53.54 62.07 9.79 18.57 22.45
TOP-k-VOTE [64] 33.90 51.34 59.76 8.57 15.92 18.37
Uncertainty-Target [15] 34.27 52.31 61.58 8.57 16.71 20.56
LAIL 35.97 53.86 63.29 13.47 24.49 27.76

(11.53%) (T 1.52%) (10.59%) (110.04%) (18.12%) (1 4.63%)

“1” represents the relative improvements compared to the SOTA baseline. Numbers in bold mean the best performances
among all approaches.

parentheses indicate the improvements achieved by LAIL compared to the SOTA baseline-TOP-k-
SBERT.

Analyses. (1) LAIL performs better than baselines on the DevEval dataset. Compared to the SOTA
baseline-TOP-k-SBERT, LAIL outperforms it by 10.04%, 8.12%, and 4.63% in terms of Pass@1, 3,
and 5. Pass@k is a very strict metric, and it is difficult to improve. The impressive improvements
prove that LAIL is not only suitable for function-level code generation, but also effective in complex
repository-level code generation. Given a requirement, LAIL can effectively select demonstration
examples that LLMs need from the function pool of a repository. (2) The performances of some
baselines are lower than the results of the zero-shot learning setting. Specifically, zero-shot learning
achieves 10.83%; however, the generated results of some baselines, such as TOP-k-GraphCodeBERT
and TOP-k-VOTE, are less than 10% in terms of Pass@1. We analyze the selected functions of
baselines and find that baselines sometimes retrieve trivial examples. These functions sometimes
might be noises for LLMs in generating programs.

Answer to RQ3: LAIL outperforms the SOTA baseline-TOP-k-SBERT by 10.04%,
8.12%, and 4.63% on the repository-level code generation in terms of Pass@1, 3,
and 5. Our approach can effectively retrieve demonstration examples that LLMs
need from a function pool of the repository.

6 Discussion
6.1 Transferability

We explore whether the retriever based on one LLM’s feedback and specific dataset can be trans-
ferred to other LLMs or code generation datasets without further tuning. This is a significant research
question since the retriever for each LLM and dataset needs to be trained in real applications. In
the next, we verify the transferability of our approach from two aspects.

6.1.1 Transfer across LLMs. We consider transferring the retriever based on one LLM’s feedback
to another LLM. Specifically, we use a source LLM (e.g., CodeGen-Multi-16B or Text-davinci-003) to
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Table 7. The Performances of LAIL’s Transfer Abilities across Different LLMs on MBJP, MBPP, and MBCPP
in Terms of Pass@k (i.e., k=1, 3, and 5)

& GPT-3.5-turbo MBJP MBPP MBCPP
Pass@1 Pass@3 Pass@5 Pass@1 Pass@3  Pass@5 Pass@1 Pass@3 Pass@5
Zero-shot learning [8] 16.63 34.48 44.21 26.60 32.00 34.60 30.34 57.01 63.68
Random [11] 53.34 62.27 65.72 50.80 60.60 63.40 40.15 60.06 66.28
AceCoder [38] 54.46 64.01 66.75 54.40 62.40 65.20 42.53 62.29 68.32
TOP-k-SBERT [47] 54.26 63.89 66.53 54.80 63.00 65.40 43.37 61.45 67.11
TOP-k-GraphCodeBERT [28] 53.95 62.67 66.32 54.20 62.60 65.20 44.08 61.61 68.27
TOP-k-VOTE [64] 51.93 62.88 65.72 42.00 56.00 61.00 42.74 62.68 67.73
Uncertainty-Target [15] 49.69 60.45 54.50 36.40 51.80 56.80 42.46 61.84 66.67
# CodeGen
LAIL 54.79 64.70 67.43 55.60 63.80 66.20 45.21 63.45 68.93

(10.61%) (1 1.08%) (11.02%) (1 1.44%) (11.27%) (11.22%) (12.56%) (11.23%) (]0.89%)
# Text-davinci-003

LAIL 55.97 64.97 68.27 56.20 64.60 66.80 45.98 63.84 70.35
12.77%) (11.50%) (12.28%) (12.56%) (12.54%) (12.14%) (14.31%) (11.85%) (12.97%)

& Text-davinci-003 & CodeGen

Random [11] 47.87 59.83 63.69 43.00 56.40 60.80 50.02 61.43 65.28

LAIL 51.82 61.75 64.89 48.20 59.00 64.20 52.18 64.54 67.90
(1825%) (13.21%) (11.88%) (112.09%) (14.61%) (1559%) (14.32%) (15.06%) (] 4.01%)

# CodeGen # Text-davinci-003

Random [11] 15.74 24.25 28.14 15.20 25.40 28.80 15.70 28.72 32.25

LAIL 19.25 27.53 30.98 17.40 26.00 30.00 18.36 30.41 35.54

(122.30%) (113.53%) (110.09%) (114.47%) (12.36%) (14.17%) (116.94%) (15.88%) (1 10.20%)

In this case, LAIL transfers a retriever learned on one LLM (the source LLM) to the other LLM (the target LLM). & means the
source LLM. # indicates the target LLM. “1” represents the relative improvements compared to the SOTA baseline. Numbers
in bold mean the best performances among all approaches.

estimate examples for training a retriever and then apply the retriever to another target LLM (e.g.,
GPT-3.5-turbo) in generating programs. Table 7 shows the performance of GPT-3.5-turbo in the
three datasets. We find that the retriever based on CodeGen-Multi-16B and Text-davinci-003 can
bring obvious improvements to GPT-3.5-turbo. In particular, in terms of Pass@1, GPT-3.5-turbo
achieves 2.56% improvements from CodeGen-Multi-16B’s feedback and 4.31% enhancements from
Text-davinci-003’s feedback compared to the SOTA baseline. The phenomenons demonstrate that
LAIL has satisfying transfer ability across different LLMs. Note that GPT-3.5-turbo cannot provide
the prediction probability of ground truths in practice; thus, LAIL is a quite meaningful approach,
especially for LLMs whose parameters are unavailable. Besides, the performance of GPT-3.5-
turbo from Text-davinci-003’s feedback is higher than the counterpart from CodeGen-Multi-16B’s
feedback. The reason might be that Text-davinci-003 and GPT-3.5-turbo have comparable abilities in
code generation; thus, their preferences are similar and Text-davinci-003 can provide more proper
examples as prompts to GPT-3.5-turbo.

To verify the transfer ability among LLMs with different sizes, we further evaluate the per-
formance of CodeGen-Multi-16B based on the feedback of Text-davinci-003 and the results of
Text-davinci-003 from CodeGen-Multi-16B’s feedback, where the parameter size of CodeGen is
much smaller than the counterpart of Text-davinci-003. As shown in Table 7, compared to the
random approach, the retriever learned from CodeGen-Multi-16B achieves 8.25%, 12.09%, and 4.32%
improvements to Text-davinci-003 on Pass@1, meanwhile, the retriever under Text-davinci-003’s
feedback brings 22.30%, 14.47%, and 16.94% improvements to CodeGen-Multi-16B, respectively.
This further indicates that the retriever trained on the source LLMs can bring improvements to
target LLMs, particularly for LLMs that have similar code generation abilities.
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MBJP MBPP MBCPP

Fig. 5. Improvements of transferring the retriever trained on one dataset (row) to others (column) on Text-
davinci-003 in the MBPP dataset. The number represents the absolute improvements from the best results of
baselines to the transferring performance of LAIL.

6.1.2  Transfer across Datasets. Considering that the compositional features of natural language
are general, the retriever trained on one dataset may apply to other datasets and exploit similar
knowledge in different datasets. In this section, we further investigate whether a retriever trained
on one dataset can transfer to others. We transfer the retriever among the three datasets (e.g., MBJP,
MBPP, and MBCPP). Figure 5 demonstrates the transferring results on Text-davinci-003 in terms
of Pass@1. The number in Figure 5 represents the absolute improvement from the best results
among baselines to the transferring performance. We find that most retrievers can successfully
transfer to other datasets and bring improvements compared to their SOTA baselines. Concretely,
the retriever trained on MBJP (MBCPP) achieves 1.28% (1.07%) absolute improvements when it
migrates to MBCPP (MBJP). On the contrary, the retriever optimized on MBCPP hardly transfers
to MBPP, meanwhile the MBPP-based retriever suffers the generation performance on MBCPP.
The reason might be that Java and C++ are object-oriented programming languages, and their
syntax and code morphology are similar. Exploring a retriever that is suitable for many datasets is
a challenging but meaningful research question, and we leave this topic as our future work.

6.2 Impacts of Demonstration Example Numbers

Most of the LLMs are trained with a limited input length, which restricts the number of examples
in the prompt. Gao et al. [23] find that LLMs are affected by the number of demonstration examples
in code-related tasks. Here, we explore the impacts of the number of examples in the prompt on
baselines and LAIL. Figure 6 reports how the performance of LAIL and TOP-k-GraphCodeBERT
change with respect to different demonstration example numbers on Text-davinci-003 at the MBPP
dataset. We choose TOP-k-GraphCodeBERT to compare with our approach for two reasons. First,
TOP-k-GraphCodeBERT is the best baseline in the MBPP dataset on the strictest metric Pass@1.
Second, TOP-k-GraphCodeBERT uses GraphCodeBERT to select a few candidate examples. On the
contrary, LAIL uses GraphCodeBERT to initialize the model-aware retriever and then trains the
retriever with positive and negative examples estimated by LLMs themselves. Comparing LAIL
to TOP-k-GraphCodeBERT, we can directly observe the improvements of LLMs caused by LAIL
in code generation. From Figure 6, we observe that the performances of TOP-k-GraphCodeBERT
and LAIL monotonically increase in rough with the increase of demonstration example numbers.
In addition, LAIL always outperforms GraphCodeBERT in all cases, which further proves the
superiority of LAIL even with different demonstration example numbers.
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Fig. 6. The impacts of the numbers of demonstration examples on TOP-k-GraphCodeBERE and LAIL in the
MBPP datasets. The base model is Text-davinci-003.

Table 8. Effects of the Number of Hard Negative Examples and Soft
Negative Examples in Learning the Preference of LLMs on the MBPP
Dataset

Pass@1 Pass@3 Pass@5

Nums. of hard negative examples

31 50.20 61.80 65.00
63 50.60 62.40 65.20
127 50.80 62.40 65.40
Nums. of soft negative examples
1 50.60 62.40 65.20
5 50.20 62.20 65.00
10 49.40 61.80 64.40

“Num.” Represents “Number.”

6.3 Effects of Contrastive Learning Parameters

The number of negative examples is an important element in contrastive learning for training a
neural retriever. As described in Section 3.2, the negative example set contains the soft negative
example and the hard negative examples. We investigate how they affect the performance of our
approach in the MBPP dataset, respectively. We use Text-davinci-003 as the base model. The results
are shown in Table 8.

To investigate the effect of hard negative example numbers, we keep the number of soft negative
examples unchanged. We can find that with the number of hard negative examples increasing,
LAIL achieves consistent improvements and can generate more correct programs. For soft negative
examples, we randomly select examples from the soft negative example set. We can find that the
more soft negative examples, the worse our approach performs. We argue that the examples in the
soft negative example set achieve high BM25 scores compared to the hard negative examples. Thus,
the soft negative example set may contain some false-negative examples. Selecting more examples
from the set will confuse the retriever in selecting the suitable demonstration examples that LLMs
need. Between the two factors, the number of soft negative examples has a greater influence on the
performance of LAIL.
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6.4 Execution Time and Deployment of LAIL and Baselines

Different from existing works [38], LAIL first uses LLMs themselves to estimate candidate examples,
then trains a model-aware retriever based on the labeled data, and applies the trained retriever to
select a few demonstration examples. In this section, we analyze the execution time and ease of
deployment of LAIL and compare them to the counterpart of baselines on the MBPP dataset based
on CodeGen-Multi-16B.

Execution Time of LAIL and Baselines. For LAIL, the execution time contains three parts: (1) The
process of estimating examples (Section 3.1). The process contains two stages. In the first stage,
for an example e; = (x;, y;), LAIL uses BM25 to calculate the textual similarities between x; and
xj, where i # j, and then filters hard negative examples through its score set B; = {bj}j.\:l. The
process costs 0.072s to filter out hard negative candidates and acquires the set S;. In the second
stage, LAIL utilizes CodeGen-Multi-16B to measure the needs of LLMs for each example (xf], yfl)
in S;, which takes 52.147s. Thus, to label positive and negative candidates for a requirement, the
total execution time is 52.219s, including 0.072 s for filtering hard negative examples and 52.147 s
for estimating examples with LLMs. (2) The process of training a model-aware retriever (Section
3.2). LAIL uses a small neural network as the retriever, which only has 125M parameters and
is initialized with GraphCodeBERT, instead of training the model from scratch. As described in
Section 4.6, we train the retriever for about 1hour. (3) The process of selecting a few demonstration
examples (Section 3.3). In the process, the trained retriever encodes a new requirement and the
requirement of candidate examples, then retrieves a few demonstration examples according to the
cosine similarity of their representational vectors. The time of encoding requirements is minimal
since the retriever only has 125M parameters. Given a requirement, the retriever costs 0.023 s to
encode the requirement and requirements of all candidate examples.

In LAIL, the processes of estimating examples and training a model-aware retriever only are
executed one time, which can be done offline. Given a new requirement, LAIL only needs to
complete the third process, i.e., applying the trained retriever to retrieve a few demonstration
examples, which costs 0.023 s as described above. When it comes to baselines, the neural model-based
approaches (i.e., TOP-k-GraphCodeBERT, TOP-k-SBERT, and TOP-k-VOTE) use neural networks to
encode requirements and calculate the cosine similarity of requirements’ vectors, which cost similar
execution time to LAIL in retrieving demonstration examples. For the baseline AceCoder, it applies
BM25 to calculate the textual similarities between a test requirement and the requirements of
candidates and then retrieves a set of examples equipped with high similarities from the training set,
whose execution time is 0.071s. Uncertainty-Target estimates candidate examples with perplexity
when LLMs generate ground truths. Given a new requirement, it needs to invoke LLMs N times
where N is the number of examples in the candidate pool. The time cost of Uncertainty-Target
is larger than LAIL because LAIL only inferences a smaller retriever N times to retrieve a few
examples for a new requirement. For a fair comparison, the approaches that use neural networks
to select candidate examples are executed on 4 NVIDIA A6000 GPUs with 48GB memory, including
LAIL, TOP-k-SBERT, TOP-k-GraphCodeBERT, TOP-k-VOTE, and Uncertainty-Target. It is worth
noting that the execution time of selecting demonstration examples in Uncertainty-Target is related
to the base LLMs since the approach selects candidate examples based on the uncertainty of base
LLMs in generating target programs. We do not consider the execution times of Uncertainty-Target
on closed-source base LLMs, such as Text-davinci-003 and GPT-3.5-turbo, because we invoke
them through APIs provided by OpenAI® and thus do not know the hardware for running them. In
practice, LAIL does not require 4 NVIDIA A6000 GPUs since its retriever only has 125 M parameters.
Considering that Uncertainty-Target needs 4 NVIDIA A6000 GPUs to select candidate examples,

3https://openai.com/.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 190. Publication date: August 2025.


https://openai.com/
https://openai.com/

190:22 J. Lietal.

Table 9. Execution Times of LAIL and All Baselines

Approach Execution times (seconds)

Zero-shot [8] -
Random [11] -

TOP-k-SBERT [44] 0.018s
TOP-k-GraphCodeBERT [26] 0.023s
TOP-k-VOTE [61] 0.023s
LAIL 0.023s
AceCoder [36] 0.071s
Uncertainty-Target [15] 52.147s

for a fair comparison, we also use the above hardware to analyze the execution time of LAIL and
baselines. Although AceCoder uses BM25 to select examples, instead of neural networks, we also
employ the same hardware to execute this approach. In addition, we run all experiments on the
deep learning development framework—Pytorch? and a python package—transformers.” The used
CPU is Intel(R) Xeon(R) Gold 6326 CPU with 2.90 GHz. To measure the execution time, we use the
“times” package to calculate the time of different approaches. The reported execution time is the
average over the test set of MBPP. In Table 9, we show the execution time of LAIL and baselines,
which demonstrates the time of retrieving a few demonstration examples for a new requirement
since estimating examples and training a retriever only need to be executed once in LAIL. We can
find that for a requirement, the execution time of selecting demonstration examples in LAIL is
less than the counterpart of Uncertainty-Target and AceCoder, meanwhile, its execution time is
comparable to the time of other baselines.

Ease of Deployment of LAIL and Baselines. For a new requirement, LAIL uses a neural retriever to
select a few demonstration examples from a candidate pool. In this article, the retriever wields
GraphCodeBERT [28] as the backbone which only has 125M parameters, so the demand for com-
puting resources is acceptable for most developers. To apply LAIL, users only need to configure
the relevant environment for running the retriever. Similarly, the baselines, such as TOP-k-SBERT,
TOP-k-GraphCodeBERT, and TOP-k-VOTE, also use a neural network to retrieve candidate exam-
ples, where their parameter scale is similar to the retriever of LAIL. Developers are also required
to install the environment to run the retriever. The heuristic baselines AceCoder uses BM25 to
retrieve a few candidates, which is easy to employ. For Uncertainty-Target, users need to prepare
more computing resources to deploy LLMs or invoke the API interface so deploying this baseline is
harder than LAIL.

6.5 Effect of Different Filters in Filtering out Hard Negative Examples

As described in Section 3.1, for each programming task in the training set, before estimating
candidate examples by LLMs, LAIL first uses BM25 to filter out hard negative examples. Although
BM25 is easy to implement and is effective, it is based on the n-gram similarity, which is usually
biased by the lexical features of requirements. Thus, it is necessary to investigate whether other
filters can lead to better performance.

In this section, we consider two embedding-based filters to figure out hard negative examples,
including GraphCodeBERT [28] and SBERT [47]. Concretely, the training set is R = {e; N

i=1>

*https://pytorch.org/.
Shttps://huggingface.co/docs/transformers/index.
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Table 10. Effect of Different Filters in Filtering out Hard
Negative Examples in MBJP on CodeGen-Multi-16B

MBJP Pass@1 Pass@3 Pass@5
LAIL 21.30 28.49 32.05
LAILGraphCodeBERT  21.07 27.93 31.81
LAILsggrT 21.43 28.45 32.14

where e; is the ith requirement-code example (x;, ;) in R. For an example e; = (x;,y;), we use
GraphCodeBERT to encode the requirement x; and the requirement x; of remaining candidates in
R, and then acquire their representational vectors E! and E/ ) where i # j. Then, we calculate

[cLS] [CLS

oLs] and E{CLS]. Finally, we acquire the score set B; = {bj}j.\:l
for e; and filter out hard negative examples which have lower cosine similarities. Similarly, we
utilize CodeBERT to encode requirements and apply the same process as GraphCodeBERT to filter
out hard negative examples. Table 10 reports the performances of different filters in filtering out
hard negative examples at MBJP when CodeGen-Multi-16B is the base model. LAILGraphCodeBERT
demonstrates that LAIL uses GraphCodeBERT as the filter, LAILsggrT means SBERT is applied to
filter out hard negative examples. We can find that when using the embedding-based filters to label
hard negative examples, the performances of LAIL are comparable to the results of LAIL where
BM25 is a filter. Considering that the simplicity of implementation, we use BM25 to filter out hard
negative examples in Section 3.1.

the cosine similarities between E’[

6.6 Benefits of LAIL for Software Engineering (SE) Practitioners and Researchers

LAIL proposes an LLM-aware selection approach for ICL-based code generation. LAIL uses LLMs
themselves to label demonstration examples as positive and negative examples. Based on the labeled
positive and negative data, LAIL trains a model-aware retriever to select examples that are more
helpful for LLMs to generate correct programs. During the inference, given a new requirement,
LAIL directly uses the trained retriever to select a few demonstration examples as the prompt
context for generating desired programs. As described above, LAIL proposes an example selection
approach for ICL-based code generation, which is meaningful to SE practitioners and researchers.

Benefits of LAIL for SE Practitioners. First, LAIL can assist SE practitioners in improving the
functional correctness of code snippets. Because LAIL aims to select a few demonstration examples
that are more helpful for LLMs to generate correct programs, which has been demonstrated by
our experiments using test cases to evaluate the functional correctness of generated programs.
Second, LAIL can enhance the programming productivity of SE practitioners in the ICL-based
code generation scenario. Because LAIL automates the process of selecting suitable demonstration
examples, SE practitioners can save a lot of time and effort in manually selecting examples from a
candidate pool. Third, LAIL can support different software development scenarios, which is flexible
for SE practitioners to use. On the one hand, LAIL is effective in both function-level and repository-
level code generation. On the other hand, as shown in experimental results, LAIL has a satisfying
generalization ability. LAIL can be applied to various programming languages (e.g., Python, Java,
and C++) and a series of LLMs (e.g., CodeGen-Multi-16B, CodeLlama-34B, Text-davinci-003, and
GPT-3.5-turbo) that have different parameter sizes. LAIL is meaningful for SE practitioners in
improving programming quality and productivity in their daily work.

Benefits of LAIL for Researchers. LAIL verifies the effectiveness of the model-aware example
selection approach for ICL-based code generation, which can provide insights to researchers on
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ICL. Researchers can further optimize this approach, including the manner to estimate candidate
examples and the way to train the retriever except for using contrastive learning. In addition, LAIL
further supports the opinion as demonstrated in existing works [16, 32], that is, the performance
of ICL-based code generation heavily depends on the quality of selected examples. LAIL provides
detailed experimental results and conducts extensive analyses, which can help researchers do more
in-depth studies based on these results and analyses. Besides, LAIL can be applied to other tasks
in SE, such as code translation and code summarization. Researchers can design suitable metrics
to estimate candidate examples by LLMs’ feedback and apply our model-aware example selection
approach to different ICL-based tasks.

6.7 Threats to Validity

There are two main threats to the validity of our work.

The Generalizability of Our Experimental Results. For the datasets, we select the datasets that
contain mainstream programming languages. Following previous studies [3, 4, 11], we use three
widely used datasets including MBPP [4], MBJP [3], and MBCPP [3]. The three datasets are collected
from real-world software communities and cover Java, Python, and C++ languages. To verify the
superiority of LAIL, we consider seven existing ICL approaches in both the code generation task
and many maintain natural language tasks. In addition, to effectively evaluate our approach, we
select a series of advanced pre-trained LLMs (e.g., CodeGen-Multi-16B [74], CodeLlama-34B [60],
Text-davinci-003 [24], and GPT-3.5-turbo [9]) as base models. We apply our approach and baselines
to base models and evaluate their performance in code generation. For the metric, following
existing studies [10, 74], we select a widely used Pass@k metric to evaluate all approaches. It is
an execution-based metric that utilizes test cases to check the correctness of generated programs.
Besides, we manually measure generated programs in terms of their correctness, quality, and
maintainability. To ensure fairness, we execute each method three times and report the average
experimental results.

The Implementation of Models and Prompts. It is widely known that deep neural models are
sensitive to the implementation details. In this article, we need to execute all baselines and our
approach on the four base LLMs. For baselines, we apply the source code and parameters published
by their original papers [28, 57, 74]. For base LLMs, the hyper-parameters of sampling will impact
their outputs. In our experiments, we keep hyper-parameters the same for all approaches such as
the temperature and the generation length. In addition, the performance of LLMs heavily depends
on the prompts, including the instruction and the number of examples. To alleviate this threat, we
leverage the same number of examples for all approaches and directly construct prompts without
any natural language instructions. Besides, it is worth noting that the candidate pool for example
selection also influences the ICL performance. Following previous studies [38], we use the training
set of each dataset as the candidate set for all approaches. A large-scale study on 13.2 million
real code files showed that the proportion of reused code is up to 80% [50], thus we believe even
in practical applications, our approach can still suitable candidate examples to support LLMs in
code generation. We do not tune the prompt and hyper-parameters experimentally and set them
empirically. Thus, there might be room to tune the hyper-parameter settings of our approach for
more improvements.

The Predicted Probability of Ground Truths Produced by LLMs. As described in Section 3.1, LAIL
uses LLMs themselves to estimate demonstration examples. Because LLMs are not perfect, the
prediction probability of the ground-truth program provided by LLMs may be biased. When terms to
LLMs with relatively weak coding ability, such as CodeGen-Multi-16B used in this article, they may
introduce a relatively larger bias when calculating the prediction probability of the ground-truth
program in principle. For more powerful LLMs, when LLMs calculate the prediction probability of
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the ground-truth program, the bias introduced by LLMs will be relatively small since these powerful
LLMs have impressive coding ability. For example, the Pass@1 performance of CodeLlama-34B and
Text-davinci-003 used in this article surpasses 45% in terms of Pass@1 on the MBJP dataset. Despite
existing bias, the performance of LAIL still outperforms the SOTA baselines and LAIL effectively
improves LLMs’ coding ability. For example, even CodeGen-Multi-16B with relatively weak coding
ability, LAIL achieves 11.58% improvements on Pass@1 in the MBJP dataset, which indicates that
the bias introduced by LLMs themselves is acceptable to a certain extent. In the future, we will
explore approaches to mitigate the bias introduced by LLMs’ probability feedback.

7 Related Work
7.1 Code Generation

Code generation can automatically generate source codes given a requirement, which attracts more
and more attention in industry and academia. Nowadays, a lot of approaches are proposed for code
generation. According to the modeling architecture, existing code generation approaches can be
mainly divided into the sequential modeling, tree modeling, graph modeling, and pre-trained model
approaches.

Sequential Modeling. To generate programs, one straightforward solution is to employ the seq2seq
framework, which directly maps a requirement to the code token sequence in an end-to-end manner.
Researchers [51] first verify the plausibility of generating character-level code by the sequential
model LSTM through empirical case studies. Later, latent prediction network [42] introduces a copy
mechanism into the character-level RNN model. Iyer et al. [31] proposes an LSTM encoder—decoder
model to generate Java token sequence from the requirement along with member variables and
member method signatures under the same class. These simple but effective solutions prove the
feasibility of code generation with sequential modeling. Furthermore, thanks to the powerful
architecture and the abundant corpus, the transformer model, especially the pre-trained model,
enables the outstanding proficiency of code generation [67]. Besides the end-to-end manner, some
studies [19, 52] decompose the decoding process into multiple stages and decode from coarse (e.g.,
an abstracted sketch) to fine (e.g., the concrete code token sequence). The pre-trained model is one
of the greatest inventions, therefore we introduce it separately in another paragraph, despite of its
sequential modeling nature.

Tree Modeling. It is known that the source code snippet can be parsed into an Abstract Syntax
Tree (AST), and the two counterparts are equivalent. Therefore, there is a natural thought to
generate the syntax tree first and then convert it back to code [49]. Most studies [32, 66, 71]
employ top-down generation. Yin and Neubig [71] present TRANX, a transition-based neural
semantic parser that maps a requirement into formal Meaning Representations (MRs). TRANX
uses a transition system based on the abstract syntax description language for the target MR
and acquires desired programs. The study [32] proposes a context-based branch selector, which
is able to dynamically determine optimal expansion orders of branches for multi-branch nodes.
It optimizes the selector through reinforcement learning and formulates the reward function as
the difference of model losses obtained through different expansion orders. Lately, TreeGen [66]
uses the attention mechanism of Transformers to alleviate the long dependency problem and
introduces a novel AST encoder to incorporate grammar rules and AST structures into the network.
Different from the top-down generation, researchers [61] propose an alternative approach, a semi-
autoregressive bottom-up parser, which allows to decoding of all sub-trees of a certain height in
parallel, leading to logarithmic runtime complexity rather than linear. Compared with the token
sequence, the syntax tree contains rich structural information, which may benefit the process of
code generation.
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Graph Modeling. The Graph Neural Network (GNN) [62] is a specialized type of deep learning
model designed to process graph-structured data. GNN usually models the AST of the program
with additional edges such as dataflow or control flow. One representative study [7] employs the
gated GNN [41] to generate the code graph by sequentially adding new nodes and edges in a
pre-determined order. Based on the generated graph, the ExprGen task is introduced to fill the
statement in a given hollowed code snippet. However, due to the inherent challenges in graph
modeling and the computational demands of GNNs, there are currently very few code generation
methods utilizing graph modeling. The graph modeling approach presents significant challenges
for code generation, and further research in this area is necessary.

Pre-Trained Model. Recently, numerous pre-trained models have been developed to automate the
code generation process. These models are typically pre-trained on extensive corpora consisting
of both natural language and programming language and are made available through parameters
or APIs. According to the structure of models, they can be divided into encoder-only models,
encoder—decoder models, and decoder-only models. @ Encoder-only models contain an encoder,
which are usually trained with language comprehension tasks, e.g., masked language modeling or
replaced token detection. CodeBERT [21] and CuBERT [34] are two pioneer studies. They apply
BERT-style pre-training techniques to source codes. Later, researchers [28] further introduce the
dataflow graph and propose GraphCodeBERT. GraphCodeBERT introduces two new pre-training
objectives to learn the code structure. To support code generation, researchers usually add a
randomly initialized transformer decoder along with encoder-only models. ® Encoder—decoder
models are composed of an encoder and a decoder. An encoder takes a requirement as the input,
and a decoder outputs a program. Many popular encoder—decoder architectures in natural language
processing have been applied to the source code. For example, T5 model [56] is applied to support
source code processing tasks and produces code-related models such as CodeT5 [10]. Similarly,
researchers [1] apply a BART model to the source code and propose the PLBART. PLBART is
pre-trained on an extensive collection of Java and Python functions and associated natural language
text via denoising auto-encoding. These models on code corpus have been widely used and achieved
impressive performances in code generation. ® Decoder-only models consist of a decoder, which
are trained to predict the next token based on the input context. Inspired by GPTs’ success in
natural language generation [55], researchers also migrate this structure to programs. Researchers
[46] first adapt GPT-2 trained on a large amount of code corpus, obtaining CodeGPT. Developers
[11] continually fine-tune GPT-3 [8] on public code from GitHub and acquire Codex. Subsequently,
a lot of LLMs are proposed for coding programs, which are introduced in Section 7.2.

7.2 LLMs

LLMs have shown impressive capabilities in code generation. They have billions of parameters and
are trained on a large amount of corpus with different training objectives and then transferred
to code generation. Inspired by the success of GPT series [54] in natural language processing,
researchers attempt to adapt similar models to source code. Early, GPT-2 [55] model is adapted to the
source code resulting in CodeGPT [46] that supports the code completion and the code generation
tasks. CodeGPT is pre-trained on Python and Java corpora from the CodeSearchNet dataset [30],
which includes 1.1 M Python functions and 1.6 M Java methods. Lately, GPT-3 [8] model is fine-
tuned on code corpus to produce CodeX [11]. It is fine-tuned on publicly available 159GB code from
GitHub and has code-writing capabilities. A distinct production version of Codex powers GitHub
Copilot [16]. Meanwhile, two similar works in spirit to CodeX are GPT-Neo [6] and GPT-]J [27]. They
are trained on the Pile dataset [22] that contains text from a variety of sources as well as 8% Github
code. Since the parameters of CodeX are not available, many researchers try to replicate them and
bring CodeParrot [14], GPT-CC [26], CodeGen [74], and PyCodeGPT [72]. PyCodeGPT [72] is a
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110 M parameters model based on GPT-Neo, which is pre-trained on 13 M high-quality Python
files with a size of 96GB. It has the ability to generate good standalone Python code. CodeGen [74]
is a family of LLMs up to 16B parameters. It is in the form of autoregressive transformers with
the next-token prediction objective trained on natural language and programming language data
including the Pile [22], BigQuery, and BigPython datasets. Recently, OpenAI° proposes GPT-3.5 [24]
and GPT-4 [25] series models (e.g., ChatGPT [9]), which have shown strong generation capabilities
in natural language and programming languages. Since neither GPT-3.5 [24] nor GPT-4 [25] is open
sourced, some researches StarCoder [39], WizardCoder [48], and CodeLLaMA [60]. WizardCoder
[48] empowers Code LLMs with complex instruction fine-tuning, by adapting the Evol-Instruct
method to the domain of code. CodeLlama [60] is a family of LLMs for code based on Llama 2 [69].
It is trained on sequences of 16k tokens and shows improvements on inputs with up to 100k tokens,
supporting large input contexts. These LLMs effectively evolve the code generation community. In
this article, we evaluate LAIL on diverse LLMs.

7.3 ICL

ICL is an emerging approach to using LLMs. By providing limited examples as a prompt, ICL
empowers LLMs to learn a specific downstream task. ICL [8] is first proposed in natural language
processing and achieves impressive performance in many tasks [17, 18, 20, 35, 68], such as text
generation and time series forecasting.

Inspired by the success of ICL in natural language processing, researchers attempt to adapt ICL
to source code [5, 11, 13]. They design task-specific instructions with a set of examples to prompt
LLMs and improve the performance on many tasks (e.g., code generation [13, 43, 65, 73] and code
clone detection [37]). Meanwhile, ICL introduces instability in performance: given different sets of
examples as prompts, LLMs’ performance usually varies from random to near SOTA [23, 44]. Some
studies [13, 38] make efforts to alleviate this issue. Gao et al. [23] study the effects of in-context
examples for code-related tasks, including the number and the sequence of selected examples. Chen
et al. [13] randomly select limited examples for ICL and verify the results in code generation. Lately,
AceCoder [38] uses BM25 to select n-gram matching examples and further generates more correct
programs. However, these approaches are based on lexical features, which require developers to
design heuristics and ignore the needs of LLMs. Instead of considering heuristic approaches, LAIL
uses LLMs themselves to measure candidate examples and trains a neural retriever to learn the
preferences of LLMs in code generation.

8 Conclusion

Due to the impact of demonstration examples, there is an increasing demand for selecting proper
demonstration examples in ICL-based code generation. This article proposes an LLM-aware selec-
tion approach for ICL-based code generation named LAIL. It requires LLMs themselves to select
demonstration examples. LLMs depending on their needs label a candidate example as a positive
example or a negative example for a new requirement. Based on labeled data, it optimizes a model-
aware retriever to learn the preference of LLMs. During the inference, LAIL uses the retriever
to select examples for ICL-based code generation. Experimental results on five code generation
datasets demonstrate that LAIL achieves the best performance among all approaches. LAIL also
shows satisfactory transferability across LLMs and datasets, showing that using LLMs themselves
to select examples is an efficient and practical approach to code generation.
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A Appendix
A.1 Human Evaluation

The goal of a code generation approach is to assist developers in writing programs. Thus, a good
program not only satisfies the requirement but also is easy to read and maintain. Although the
Pass@k results are reported in RQ1 of Section 5, the test cases contained in datasets cannot achieve
100% coverage, such as whether test cases consider special input values. It is necessary to manually
assess generated programs. In this section, we manually measure generated programs in three
aspects (e.g., correctness, code quality, and maintainability) following previous works [38].

Setup. We randomly select 50 test examples from MBJP, MBPP, and MBCPP, respectively. Then,
we use Text-davinci-003 to generate programs with different ICL approaches. 1,200 (50 X 3 X 8 )
programs for human evaluation, where 3 is the number of datasets and 8 means the number of all
selection approaches. Finally, we obtain 1,200 (50 X 3 x 8) programs for human evaluation, where
3 is the number of datasets and 8 means the number of all selection approaches. We randomly
divide test examples into 5 groups and each group contains 240 (10 X 3 X 8) programs, where 10
denotes the number of problems for each group. For each aspect, the score is an integer and ranges
from 0 to 2 considering the balance of evaluation quality and scoring time. The higher the score
is, the better the program is. @ Correctness measures whether the generated program satisfies
the requirement. If the generated program completely meets the requirement, the score is 2. The
score is 1 if a generated program only satisfies a portion of a requirement. The score is set to 0
in other situations. ® Code quality verifies whether predicted programs contain bad code smell.
The bad code smell usually indicates potential issues or poor design choices in the code. These
issues might not cause errors but can lead to difficulties in reading and understanding the code.
If the generated program is clear, concise, and easy to understand, it is scored to 2. Scorers give
1 point for the program where some parts of the code snippet are better organized and minor
redundancies are present. If the code is hard to understand or follow due to complexity or lack of
clarity, it is scored as 0. ® Maintainability refers to the ease with which a program can be modified,
extended, and maintained over its lifecycle. The score is 2 if a program is well organized and
consistent in programming criterion and style, facilitating easy maintenance and modification. If
the program lacks maintainability and consistency, scorers give it 1 point. If the generated program
is challenging to maintain or modify, it is scored to 0.

We publicly recruit 10 participants to verify these programs, which contain 5 computer science
students and 5 industrial practitioners. The participants must be experts in computer science and
have at least 3 years of programming experience in Java, Python, and C++ used in our article. To
recruit students, we post posters in the building of the computer science college at our school and
invite the first five students who meet the above requirements based on the order of registration.
Finally, the student participants include four PhDs and one master. On average, they write more
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than 200line programs every day, containing their coursework, projects, and research experiments.
To recruit industrial practitioners, we make a public announcement in WeChat groups of an internet
company. The first five people meeting the requirements are invited. In the recruitment process, the
requirements for participants and scoring criteria are always available. Finally, the hired industrial
practitioners have rich experience in project development. Both students and industrial practitioners
have more than 3 years of programming experience in Java, Python, and C++. These participants are
randomly split into five groups, where each group contains a student and an industrial practitioner.
Before scoring the generated programs, we conduct uniform training for participants to ensure
that they have a consistent understanding in the scoring criteria as much as possible. Participants
must spend no less than 2minutes reviewing each program and then give the corresponding score
based on the scoring criterion. Meanwhile, we ask participants not to consider their programming
styles, doing our best to ensure the fairness of human scores.

To assess generated programs, we put the generated programs of each approach into a file
with the json format. In the file, each example is stored as a dictionary, containing a requirement
and the generated program for the requirement. To ensure fairness, participants do not know the
corresponding approach of each file. Each group receives a compressed package that includes eight
Jjson files corresponding to the generated results of eight different approaches and documentation
about scoring standards. Each file contains 10 X 8 X 3 examples to be scored and is measured by
two participants of a group, where 3 is the number of datasets. Considering that two participants
in each group may have conflicts, we design different strategies to calculate the final score of a
generated program. Concretely, for a generated program, when the absolute difference of two scores
provided by two participants is greater than 1 (i.e., one person scores 0 and the other person scores
2), we randomly invite one participant from other groups to further assess the program, aiming
to reduce the negative effects of scoring conflicts. If the third participant scores 1, the final score
of the program is the average score of the three people. If the third participant scores 2 (or 0), we
abandon the existing score 0 (or 2) provided by the original scorers and calculate the average of the
remaining two scores. If the absolute difference between two scores provided by two participants
is no more than 1, we calculate the average of the two participants’ scores directly.

Results. The results of the human evaluation are shown in Table A1. The percentages in paren-
theses represent the improvements from the best results of baselines to LAIL. We apply T-tests to
complete the statistical tests and use Cohen’s d as effect size. The p-value of human evaluation on
correctness, code quality, and maintainability is smaller than 0.05, and the values of Cohen’s d on
the three aspects are all larger than 0.65. The detailed statistic test results are shown in Table A2.

Analyses. (1) Developers prefer programs generated by LAIL over all baselines. LAIL substantially
outperforms all baselines in three aspects, which proves that generated programs by LAIL not only
satisfy more requirements but also are more human-preferred. (2) In addition to satisfying require-
ments, programs provided by our approach are easier to read and have less bad smell. Particularly,
LAIL surpasses the SOTA approach by 5.862% in code quality and 6.714% in maintainability. (3)
Some heuristic approaches that select the same examples as prompts for all test requirements are not
optimal for ICL. As shown in Table A1, Uncertainty-Target and TOP-k-VOTE perform comparably
to the random approach, which indicates that applying the same prompt to all requirements in the
test data are not a good choice. For different test requirements, we should use their appropriate
prompts to help LLMs for code generation.
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Table A1. The Results of Human Evaluation on the Randomly Sampled Examples of the Three
Datasets in Aspects of Correctness, Code Quality, and Maintainability When Text-davinci-003 is as
the Baseline

Approach Correctness Code Quality Maintainability
Zero-shot learning [8] 0.472 1.098 1.195
Random [11] 0.925 1.325 1.520
AceCoder [38] 1.523 1.657 1.653
TOP-k-SBERT [47] 1.569 1.643 1.668
TOP-k-GraphCodeBERT [28] 1.582 1.740 1.609
TOP-k-VOTE [64] 1.325 1.615 1.624
Uncertainty-Target [15] 0.736 1.306 1.335
LAIL 1.764 (] 11.504%) 1.842 (1 5.862%) 1.780 (] 6.714%)

The numbers in bold represent the best performances among LAIL and baselines.

Table A2. Statistical Test Results of Human Evaluation on
Text-davinci-003

Correctness Code Quality Maintainability

p-value 0.033 0.045 0.037
Cohen’s d 0.82 0.67 0.79

Cohen’s d reflects effect size.
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